0%

Java中的23中设计模式(二)

本文转载自http://blog.csdn.net/zhangerqing

我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适
配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模
式是各种模式的起源,我们看下面的图:

6. 适配器模式(Adapter)

适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所

造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式

首先,我们来看看类的适配器模式,先看类图:

核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过
Adapter类,将Source的功能扩展到Targetable里,看代码:

1
2
3
4
5
6
public class Source {  

public void method1() {
System.out.println("this is original method!");
}
}
1
2
3
4
5
6
7
8
public interface Targetable {  

/* 与原类中的方法相同 */
public void method1();

/* 新类的方法 */
public void method2();
}
1
2
3
4
5
6
7
public class Adapter extends Source implements Targetable {  

@Override
public void method2() {
System.out.println("this is the targetable method!");
}
}

Adapter类继承Source类,实现Targetable接口,下面是测试类:

1
2
3
4
5
6
7
8
public class AdapterTest {  

public static void main(String[] args) {
Targetable target = new Adapter();
target.method1();
target.method2();
}
}

输出:
this is original method! this is the targetable method!
这样Targetable接口的实现类就具有了Source类的功能。

对象的适配器模式

基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:

只需要修改Adapter类的源码即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Wrapper implements Targetable {  

private Source source;

public Wrapper(Source source){
super();
this.source = source;
}
@Override
public void method2() {
System.out.println("this is the targetable method!");
}

@Override
public void method1() {
source.method1();
}
}

测试类:

1
2
3
4
5
6
7
8
9
public class AdapterTest {  

public static void main(String[] args) {
Source source = new Source();
Targetable target = new Wrapper(source);
target.method1();
target.method2();
}
}

输出与第一种一样,只是适配的方法不同而已。

第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:

这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在
一些实现类中并不是都需要。看代码:

1
2
3
4
5
public interface Sourceable {  

public void method1();
public void method2();
}

抽象类Wrapper2:

1
2
3
4
5
public abstract class Wrapper2 implements Sourceable{  

public void method1(){}
public void method2(){}
}
1
2
3
4
5
public class SourceSub1 extends Wrapper2 {  
public void method1(){
System.out.println("the sourceable interface's first Sub1!");
}
}
1
2
3
4
5
public class SourceSub2 extends Wrapper2 {  
public void method2(){
System.out.println("the sourceable interface's second Sub2!");
}
}
1
2
3
4
5
6
7
8
9
10
11
12
public class WrapperTest {  

public static void main(String[] args) {
Sourceable source1 = new SourceSub1();
Sourceable source2 = new SourceSub2();

source1.method1();
source1.method2();
source2.method1();
source2.method2();
}
}

测试输出:
the sourceable interface's first Sub1! the sourceable interface's second Sub2!
达到了我们的效果!
讲了这么多,总结一下三种适配器模式的应用场景:
类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

7. 装饰模式(Decorator)

顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对
象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:

Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

1
2
3
public interface Sourceable {  
public void method();
}
1
2
3
4
5
6
7
public class Source implements Sourceable {  

@Override
public void method() {
System.out.println("the original method!");
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Decorator implements Sourceable {  

private Sourceable source;

public Decorator(Sourceable source){
super();
this.source = source;
}
@Override
public void method() {
System.out.println("before decorator!");
source.method();
System.out.println("after decorator!");
}
}

测试类:

1
2
3
4
5
6
7
8
public class DecoratorTest {  

public static void main(String[] args) {
Sourceable source = new Source();
Sourceable obj = new Decorator(source);
obj.method();
}
}

输出:
before decorator! the original method! after decorator!

  • 装饰器模式的应用场景:
  1. 需要扩展一个类的功能。
  2. 动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)
  • 缺点:产生过多相似的对象,不易排错!

8. 代理模式(Proxy)

其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。
先来看看关系图:
根据上文的阐述,代理模式就比较容易的理解了,
我们看下代码:

1
2
3
public interface Sourceable {  
public void method();
}
1
2
3
4
5
6
7
public class Source implements Sourceable {  

@Override
public void method() {
System.out.println("the original method!");
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
public class Proxy implements Sourceable {  

private Source source;
public Proxy(){
super();
this.source = new Source();
}
@Override
public void method() {
before();
source.method();
atfer();
}
private void atfer() {
System.out.println("after proxy!");
}
private void before() {
System.out.println("before proxy!");
}
}

测试类:

1
2
3
4
5
6
7
8
public class ProxyTest {  

public static void main(String[] args) {
Sourceable source = new Proxy();
source.method();
}

}

输出:
before proxy! the original method! after proxy!

  • 代理模式的应用场景:
    如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:
  1. 修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。
  2. 就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。
    使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

9. 外观模式(Facade)

外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

我们先看下实现类:

1
2
3
4
5
6
7
8
9
10
public class CPU {  

public void startup(){
System.out.println("cpu startup!");
}

public void shutdown(){
System.out.println("cpu shutdown!");
}
}
1
2
3
4
5
6
7
8
9
10
public class CPU {  

public void startup(){
System.out.println("cpu startup!");
}

public void shutdown(){
System.out.println("cpu shutdown!");
}
}
1
2
3
4
5
6
7
8
9
10
public class Disk {  

public void startup(){
System.out.println("disk startup!");
}

public void shutdown(){
System.out.println("disk shutdown!");
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class Computer {  
private CPU cpu;
private Memory memory;
private Disk disk;

public Computer(){
cpu = new CPU();
memory = new Memory();
disk = new Disk();
}

public void startup(){
System.out.println("start the computer!");
cpu.startup();
memory.startup();
disk.startup();
System.out.println("start computer finished!");
}

public void shutdown(){
System.out.println("begin to close the computer!");
cpu.shutdown();
memory.shutdown();
disk.shutdown();
System.out.println("computer closed!");
}
}

User类如下:

1
2
3
4
5
6
7
8
public class User {  

public static void main(String[] args) {
Computer computer = new Computer();
computer.startup();
computer.shutdown();
}
}

输出:
start the computer! cpu startup! memory startup! disk startup! start computer finished! begin to close the computer! cpu shutdown! memory shutdown! disk shutdown! computer closed!

如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!

10.桥接模式(Bridge)

桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。
我们来看看关系图:

实现代码:
先定义接口:

1
2
3
public interface Sourceable {  
public void method();
}

分别定义两个实现类:

1
2
3
4
5
6
7
public class SourceSub1 implements Sourceable {  

@Override
public void method() {
System.out.println("this is the first sub!");
}
}
1
2
3
4
5
6
7
public class SourceSub2 implements Sourceable {  

@Override
public void method() {
System.out.println("this is the second sub!");
}
}

定义一个桥,持有Sourceable的一个实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public abstract class Bridge {  
private Sourceable source;

public void method(){
source.method();
}

public Sourceable getSource() {
return source;
}

public void setSource(Sourceable source) {
this.source = source;
}
}
1
2
3
4
5
public class MyBridge extends Bridge {  
public void method(){
getSource().method();
}
}

测试类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class BridgeTest {  

public static void main(String[] args) {

Bridge bridge = new MyBridge();

/*调用第一个对象*/
Sourceable source1 = new SourceSub1();
bridge.setSource(source1);
bridge.method();

/*调用第二个对象*/
Sourceable source2 = new SourceSub2();
bridge.setSource(source2);
bridge.method();
}
}

output:
this is the first sub! this is the second sub!
这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

11. 组合模式(Composite)

组合模式有时又叫 **部分-整体模式**, 在处理类似树形结构的问题时比较方便,看看关系图:

直接来看代码:

直接来看代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public class TreeNode {  

private String name;
private TreeNode parent;
private Vector<TreeNode> children = new Vector<TreeNode>();

public TreeNode(String name){
this.name = name;
}

public String getName() {
return name;
}

public void setName(String name) {
this.name = name;
}

public TreeNode getParent() {
return parent;
}

public void setParent(TreeNode parent) {
this.parent = parent;
}

//添加孩子节点
public void add(TreeNode node){
children.add(node);
}

//删除孩子节点
public void remove(TreeNode node){
children.remove(node);
}

//取得孩子节点
public Enumeration<TreeNode> getChildren(){
return children.elements();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Tree {  

TreeNode root = null;

public Tree(String name) {
root = new TreeNode(name);
}

public static void main(String[] args) {
Tree tree = new Tree("A");
TreeNode nodeB = new TreeNode("B");
TreeNode nodeC = new TreeNode("C");

nodeB.add(nodeC);
tree.root.add(nodeB);
System.out.println("build the tree finished!");
}
}

使用场景: 将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

12. 享元模式(Flyweight)

享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,
通常与工厂模式一起使用。

FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。看个例子:

看下数据库连接池的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
public class ConnectionPool {  

private Vector<Connection> pool;

/*公有属性*/
private String url = "jdbc:mysql://localhost:3306/test";
private String username = "root";
private String password = "root";
private String driverClassName = "com.mysql.jdbc.Driver";

private int poolSize = 100;
private static ConnectionPool instance = null;
Connection conn = null;

/*构造方法,做一些初始化工作*/
private ConnectionPool() {
pool = new Vector<Connection>(poolSize);

for (int i = 0; i < poolSize; i++) {
try {
Class.forName(driverClassName);
conn = DriverManager.getConnection(url, username, password);
pool.add(conn);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} catch (SQLException e) {
e.printStackTrace();
}
}
}

/* 返回连接到连接池 */
public synchronized void release() {
pool.add(conn);
}

/* 返回连接池中的一个数据库连接 */
public synchronized Connection getConnection() {
if (pool.size() > 0) {
Connection conn = pool.get(0);
pool.remove(conn);
return conn;
} else {
return null;
}
}
}

通过连接池的管理,实现了数据库连接的共享,不需要每一次都重新创建连接,节省了数据库重新创建的开销,提升了系统的性能!